If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25y^2-7921=0
a = 25; b = 0; c = -7921;
Δ = b2-4ac
Δ = 02-4·25·(-7921)
Δ = 792100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{792100}=890$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-890}{2*25}=\frac{-890}{50} =-17+4/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+890}{2*25}=\frac{890}{50} =17+4/5 $
| 8m^2-20m-8=0 | | 8(a=6) | | 6-x/7=0 | | 2x+3=-4-7 | | x-6=3•)2-x | | 2x2+8x–24=0 | | -3x/10=-1/5 | | -8x/3=6 | | 2/9=6/n= | | 5x/2=-3 | | 5n+n=44 | | x²-34x+64=0 | | 3x/(2*6)+x/2=24 | | 5x+250=3x+50 | | T÷2+t=0.6 | | 2x+10=1x+20 | | Z^2=24-7i | | 12n+20=7n+35 | | 1.5x+10=2x+0 | | 4x^-2-3x^-2=1/36 | | 9x+8/5+6=4 | | -3+2(x-4)=-3(x+1) | | K^2+-4k-8=0 | | K2+-4k-8=0 | | 2(3x+8)=23 | | A=7n+5 | | -4x-3=1-8x | | 8p+15=5p+21 | | -8y+5(y-7)=-11 | | 2=2x–6 | | x+5=10,x/9=2 | | 3{x-4}-2{x+1}=20 |